# Flight Dynamics & Control Flight Control



#### Harry G. Kwatny

Department of Mechanical Engineering & Mechanics Drexel University



## Outline

- Types of Flight Control Systems
- Classical & Modern Design Methods
  - Classical SISO Root locus, frequency domain (bode plots, sensitivity function, Nyquist analysis, gain & phase margins)
  - Modern SISO or MIMO pole placement, optimal control ( $H_2$ ,  $H_\infty$ ), separation principle
- Controllability/Observability
- Normal Forms for LTI Systems
- Pole Placement
  - 747 Altitude Hold
- Separation Principle
  - F-16 Stability Augmention System



# **Control Systems**

- flight path regulation:
  - flight path angle,  $\gamma$ , via elevator,  $\delta_e$ ,
  - velocity regulation, V via thrust, T,
  - altitude hold, h via elevator,  $\delta_e$ ,
- autopilots: regulation of attitude using independent single loops
  - pitch,  $\theta$  via elevator,  $\delta_{e}$ ,
  - roll,  $\phi$  via aileron,  $\delta_a$ ,
  - yaw,  $\psi$  via rudder,  $\delta_r$ ,
- stability augmentation systems: feedback of angular rates
  - pitch,  $\theta$ , via elevator,  $\delta_e$ ,
  - roll,  $\phi$ , via aileron,  $\delta_a$ ,
  - yaw,  $\psi$ , via rudder,  $\delta_r$ ,



# **Controllability & Observability**

 $\dot{x} = Ax + Bu$ y = Cx + Du

Controllability: The system is (completely) controllable if there exists a control input u(t) defined on a finite time interval [0,T] that steers the system from any initial state  $x_0$  to any final state  $x_1$ .

Observability: The system is (completely) observable if the initial state  $x_0$  can be determined from knowledge of the input u(t) and the measurement of the output y(t) over a finite time interval [0,T].



#### **Controllability / Observability Tests**

Controllability Matrix:  $C = \begin{bmatrix} B & AB & \cdots & A^{n-1} \end{bmatrix}$ Observability Matrix:  $O = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$ 

Controllable  $\Leftrightarrow$  rank  $\mathcal{C} = n$  (for SI det  $\mathcal{C} \neq 0$ ) Observable  $\Leftrightarrow$  rank  $\mathcal{O} = n$  (for SO det  $\mathcal{O} \neq 0$ )



### **Special Forms**

Consider a SISO controllabile & observable system

$$\mathcal{C} = \begin{bmatrix} b & Ab & \cdots & A^{n-1}b \end{bmatrix}, \det \mathcal{C} \neq 0 \quad \mathcal{O} = \begin{bmatrix} c \\ cA \\ \vdots \\ cA^{n-1} \end{bmatrix}, \det \mathcal{O} \neq 0$$
$$\mathcal{C}^{-1} = \begin{bmatrix} q_1 \\ \vdots \\ q_n \end{bmatrix} \qquad \qquad \mathcal{O}^{-1} = \begin{bmatrix} p_1 & \cdots & p_n \end{bmatrix}$$

We will consider four state transformations defined by

$$T_{1} = \mathcal{C}, T_{2} = \mathcal{O}, T_{3} = \begin{bmatrix} q_{n} \\ q_{n}A \\ \vdots \\ q_{n}A^{n-1} \end{bmatrix}, T_{4} = \begin{bmatrix} p_{n} & Ap_{n} & \cdots & A^{n-1}p_{n} \end{bmatrix}$$



#### **Controllability Form for SISO Systems**





# **Controllability Form – the transformation**

$$\dot{z} = (T^{-1}AT)z + (T^{-1}b)u$$

$$T^{-1}T = I \Longrightarrow \begin{bmatrix} T^{-1}b & T^{-1}Ab & \cdots & T^{-1}A^{n-1}b \end{bmatrix} = I$$

$$T^{-1}AT = \begin{bmatrix} T^{-1}Ab & T^{-1}A^{2}b & \cdots & T^{-1}A^{n}b \end{bmatrix}$$

$$T^{-1}b = \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix} \qquad = \begin{bmatrix} 0 & 0 & Y_{1}\\1 & Y_{2}\\0 & \vdots\\0 & 1 & Y_{n} \end{bmatrix}, \quad Y = T^{-1}A^{n}b$$

suppose det  $(\lambda I - A) = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_0$ , C-H Thm  $\Rightarrow A^n + a_{n-1}A^{n-1} + \dots + a_0I = 0$ 

$$Y = T^{-1}A^{n}b = -a_{n-1}T^{-1}A^{n-1}b - \dots - a_{0}T^{-1}b = \begin{bmatrix} -a_{0} \\ -a_{1} \\ \vdots \\ -a_{n-1} \end{bmatrix}$$



#### **Observability Form**





# **Observability Form – the transformation**

$$y = cx$$
  

$$\dot{y} = cAx, cb = 0$$
  

$$\ddot{y} = cA^{2}x, cAb = 0$$
  

$$\vdots$$
  

$$y^{(n-1)} = cA^{n-1}x, cA^{n-2}b = 0$$
  

$$y^{(n)} = cA^{n}x + u, cA^{n-1}b = 1$$
  

$$z_{1} = cx$$
  

$$\dot{z}_{1} = z_{2}$$
  

$$\dot{z}_{2} = z_{3}$$
  

$$\vdots$$
  

$$z_{n} = cA^{n-1}x$$
  

$$\dot{z}_{n-1} = z_{n}$$
  

$$\dot{z}_{n} = cA^{n}S^{-1}z + u$$



$$z = Sx$$

# **Observability Form – the transformation, cont'd**

$$S = \begin{bmatrix} c \\ cA \\ \vdots \\ cA^{n-1} \end{bmatrix}, SS^{-1} = I \Rightarrow \begin{bmatrix} cS^{-1} \\ cAS^{-1} \\ \vdots \\ cA^{n-1}S^{-1} \end{bmatrix} = I$$
$$A^{n} + a_{n-1}A^{n-1} + \dots + a_{1}A + a_{0}I = 0$$
$$cA^{n}S^{-1} = -a_{n-1}cA^{n-1}S^{-1} - \dots - a_{1}cAS^{-1} - a_{0}cS^{-1}$$
$$= \begin{bmatrix} -a_{n-1} & \dots & -a_{1} & -a_{0} \end{bmatrix}$$





### **Pole Placement Problem**

Given a linear system:

 $\dot{x} = Ax + Bu$ 

find a state feedback control:

u = Kx

such that the closed loop system:

$$\dot{x} = Ax + BKx = (A + BK)x$$

has a specified (self-conjugate) set of poles  $\{p_1, p_2, ..., p_n\}$ .



# Pole Placement Sol'n: SISO Case

• Convert  $\dot{x} = Ax + bu$  to controller form (phase variable form) using x = Tz:

$$\dot{z} = \begin{bmatrix} 0 & 1 & 0 \\ \ddots & \ddots & \\ & 0 & 1 \\ -a_0 & -a_1 & \cdots & -a_{n-1} \end{bmatrix} z + \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} u$$
  
Set  $u = \begin{bmatrix} k_1 & k_2 & \cdots & k_n \end{bmatrix} z$  and obtain closed loop:  $\dot{z} = \begin{bmatrix} 0 & 1 & 0 \\ & \ddots & \ddots & \\ & & 0 & 1 \\ k_1 - a_0 & k_2 - a_1 & \cdots & k_n - a_{n-1} \end{bmatrix} z$ 

• Expand desired closed loop characteristic polynomial and compare coefficients, and solve for  $k_1, \ldots, k_n$ :

 $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$ 

 $\phi_{cl}(\lambda) = (\lambda - p_1)(\lambda - p_2)\cdots(\lambda - p_n) = \lambda^n + \alpha_{n-1}\lambda^{n-1} + \cdots + \alpha_0 \Rightarrow \alpha_0 = a_0 - k_1, \alpha_1 = a_1 - k_2, \dots, \alpha_{n-1} = a_{n-1} - k_n$ • Convert back to *x*-coordinates:  $Kz = KT^{-1}x \Rightarrow u = (KT^{-1})x$ 



#### **Pole Place Design: The Easy Way**

PLACE Pole placement technique

K = PLACE(A,B,P) computes a state-feedback matrix K such that the eigenvalues of A-B\*K are those specified in vector P. No eigenvalue should have a multiplicity greater than the number of inputs.

Warning!! Notice the sign difference.



# Ackermann's Formula

$$K = \begin{bmatrix} 0 & \cdots & 0 & 1 \end{bmatrix} \mathcal{C}^{-1} \phi_{cl} \left( A \right) \qquad L = \phi_{cl} \left( A \right) \mathcal{O}^{-1} \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

ACKER Pole placement gain selection using Ackermann's formula.

K = ACKER(A,B,P) calculates the feedback gain matrix K such that the single input system

x = Ax + Bu

with a feedback law of u = -Kx has closed loop poles at the values specified in vector P, i.e.,  $P = eig(A-B^*K)$ .



#### Boeing 747-400 altitude hold controller







# **Boeing 747 Dynamics (cruise)**





### **Boeing 747 Inner Loop Design**

A=[-0.0064 0.0263 0 -32.2 0;-0.0941 -0.624 820 0 0;-.000222 - 0.00153 - 0.668 0 0;0 0 1 0 0;0 - 1 0 830 0];B = [0; -32.7; -2.08; 0; 0]; $C = [0 \ 0 \ 0 \ 0 \ 1];$ poles=[0,-2.25+2.99i,-2.25-2.99i,-0.0105,-0.0531]; Kinner=place(A,B,poles) eiq(A-B\*Kinner) Kinner = -0.0008 -0.0054 -1.4845 -0.65170 ans = 0 Small contribution, so we'll -2.2500 + 2.9900i-2.2500 - 2.9900i drop these two terms -0.0531-0.0105



# Boeing 747 cont'd





# Boeing 747 cont'd

- Inner loop 'stabilizer' requires only the allowed measurements, q, θ – so it can be readily implemented
- The outer loop 'altitude hold' only uses altitude. As we will see, it is necessary to estimate other states



# Computations - Attitude hold state feedback gain

>> A=[-0.0064 0.0263 0 -32.2 0;-0.0941 -0.624 761 -196.2 0; -.0002 -0.0015 -4.41 -12.48 0;0 0 1 0 0;0 -1 0 830 0]

```
-0.0064 0.0263
                            0 -32.2000
                                               0
  -0.0941 -0.6240 761.0000 -196.2000
                                               0
  -0.0002 -0.0015 -4.4100 -12.4800
                                               0
        0
                  0 1.0000
                                               0
                                      0
        0 -1.0000 0 830.0000
                                               Ω
>> b = [0; -32, 7; -2, 08; 0; 0]
b =
        0
  -32.7000
  -2.0800
         0
         0
>> p=[-.0045;-.145;-.513;-2.25+i*2.98;-2.25-i*2.98]
 -0.0045
  -0.1450
  -0.5130
  -2.2500 + 2.9800i
  -2.2500 - 2.9800i
```



A =

# **Computations - Attitude hold state feedback gain**

```
>> K=place(A,b,p)
K =
    -0.0011    0.0016  -0.0843  -1.6011  -0.0010
>> eig(A-b*K)
ans =
    -2.2500 + 2.9800i
    -2.2500 - 2.9800i
    -0.0045
    -0.5130
    -0.1450
```

Clearly, of the five states u,w,q, $\theta$ ,h, the weights on  $\theta$ , and then q, are the largest. The other 3 are of the same order. We will estimate all 5 states from measurement h.



### **Full-State Estimator**





# **Estimator Error Dynamics**

$$\dot{x} = Ax + Bu, \ y = Cx$$
  
$$\dot{\hat{x}} = A\hat{x} + Bu + L(\hat{y} - y), \ \hat{y} = C\hat{x}$$
  
$$e \coloneqq x - \hat{x} \Longrightarrow \dot{e} = Ae + LCe \Longrightarrow \dot{e} = (A + LC)e$$

One approach is to select *L* so as to place the poles of (A + LC). Notice that the following two pole placement problems are equivalent:

(A+BK), (A, B) controllable  $(A^{T}+C^{T}L^{T}), (A, C)$  observable



# **Closed Loop Dynamics**

$$\dot{x} = Ax + Bu$$
  

$$\dot{x} = A\hat{x} + Bu + L(C\hat{x} - Cx)$$
  

$$u = K\hat{x}$$
  

$$\dot{x} = Ax + BK\hat{x} = (A + BK)x - BKe$$
  

$$\dot{e} = Ae + LCe = (A + LC)e$$
  

$$\begin{bmatrix}\dot{x}\\\dot{e}\end{bmatrix} = \begin{bmatrix}A + BK & -BK\\0 & A + LC\end{bmatrix}\begin{bmatrix}x\\e\end{bmatrix} \Rightarrow \begin{array}{c} \text{closed loop poles}\\\lambda(A + BK) + \lambda(A + LC) \end{bmatrix}$$







#### **Computations – observer gain**

```
>> c=[0,0,0,0,1];
>> poles=[-0.0045,-5.645,-9,-10,-11];
>> L=place(A',c',poles)'
T. =
   -6.5323
  915.2339
   -2.7283
    1.4615
   30.6091
>> eig(A-L*c)
ans =
   -0.0045
  -11.0000
  -10.0000
   -9.0000
   -5.6450
```



### **Computations – compensator transfer function**

We have the plant transfer function, now we will compute the compensator transfer function. This will allow us to compute root locus and margins.





#### **Root Locus**





# Margins





#### **Step response**





# **Sensitivity Function**





#### **Example: F-16** Ianding approach

$$\begin{bmatrix} \dot{u} \\ \dot{a} \\ \dot{q} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} -0.507 & -3.861 & 0 & -32.17 \\ -0.00117 & -0.5164 & 1 & 0 \\ -0.00129 & 1.4168 & -0.4932 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} u \\ a \\ \theta \end{bmatrix} + \begin{bmatrix} 0 \\ -0.0717 \\ -1.645 \\ 0 \end{bmatrix} \delta_E$$

$$y = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} u \\ \alpha \\ \theta \end{bmatrix}$$
phugoid:  $\lambda = -0.0438167 \pm j0.206461$ 

$$h = \begin{bmatrix} 0.999978 \\ 0.000484 \\ 0.001343 \\ -0.000272 \end{bmatrix} \pm j \begin{bmatrix} 0 \\ 0.0002676 \\ 0.0002264 \\ -0.0064497 \end{bmatrix}$$
short period:  $\lambda = -1.7036, 0.730937$ 

$$h = \begin{bmatrix} -0.994287 \\ -0.063373 \\ 0.074073 \\ -0.043481 \end{bmatrix}, \begin{bmatrix} 0.999908 \\ 0.999508 \\ -0.014171 \\ -0.016507 \\ -0.022584 \end{bmatrix}$$



#### F-16: PI Control



#### Example: F-16 state feedback

Desired poles -

short period:  $\lambda_{1,2} = -1.25 \pm j2.16506$ phugoid:  $\lambda_{3,4} = -0.01 \pm j0.0994987$ 

 $K = \begin{bmatrix} 0.004076 & 3.87578 & 0.718424 & 0.095189 \end{bmatrix}$ 



#### Example: F-16 state feedback





#### Example: F-16 Rynaski "robust observer"

"place observer poles at LHP plant zeros, remainder are placed arbitrarily"

 $\lambda = 0, -0.04231, -0.5865, -1$   $R_{1} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0.707107 \\ 0.707107 \\ 0.707107 \end{bmatrix}, R_{2} = \begin{bmatrix} 0.000934 \\ -0.006733 \\ 0.000293 \\ 0.710515 \\ 0.710515 \\ 0.703649 \end{bmatrix}, R_{3} = \begin{bmatrix} 0.001445 \\ 0.665243 \\ -0.028975 \\ 0.079296 \\ 0.741837 \end{bmatrix}, R_{4} = \begin{bmatrix} 0.000863 \\ 0.73183 \\ -0.247431 \\ 0.027934 \\ 0.634367 \end{bmatrix}$   $L^{T} = \begin{bmatrix} 0.168343 & -1.02106 & -0.56851 & -1 \end{bmatrix}$ 



### Example: F-16

$$G_{p}(s) = 1.645 \frac{s(s+0.0423101)(s+0.586543)}{(s-0.730937)(s+1.7036)(s^{2}+0.0876334s+0.044546)}$$
$$G_{c}(s) = 4.46035 \frac{(s+2.45962)(s+0.0148335\pm j0.147508)}{s(s+0.423102)(s+0.586577)(s+2.45962)}$$





#### **Root Locus**





# Margins





### **Example F-16**















